Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chem Res Toxicol ; 37(4): 561-570, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534178

RESUMO

Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/farmacologia
2.
J Med Chem ; 67(5): 3244-3273, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38421819

RESUMO

Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.


Assuntos
Antineoplásicos Fitogênicos , Camptotecina , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , DNA Topoisomerases Tipo I/metabolismo
3.
Small Methods ; 8(1): e2301131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906050

RESUMO

Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Nanoestruturas/uso terapêutico
4.
Radiat Oncol ; 18(1): 189, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974211

RESUMO

PURPOSE: To discuss the optimal treatment modality for inoperable locally advanced Non-Small Cell Lung Cancer patients with poor physical status, impaired cardio-pulmonary function, and negative driver genes, and provide clinical evidence. MATERIALS AND METHODS: Retrospective analysis of 62 cases of locally advanced non-small cell lung cancer patients with negative driver genes treated at Tsukuba University Hospital(Japan) and Qingdao University Affiliated Hospital(China).The former received proton therapy with concurrent chemotherapy, referred to as the proton group, with 25 cases included; while the latter underwent X-ray therapy with concurrent chemoradiotherapy followed by 1 year of sequential immunomodulatory maintenance therapy, referred to as the X-ray group, with 37 cases included.The treatment response and adverse reactions were assessed using RECIST v1.1 criteria and CTCAE v3.0, and radiotherapy planning and evaluation of organs at risk were performed using the CB-CHOP method.All data were subjected to statistical analysis using GraphPad Prism v9.0, with a T-test using P < 0.05 considered statistically significant. RESULTS: (1)Target dose distribution: compared to the X-ray group, the proton group exhibited smaller CTV and field sizes, with a more pronounced bragg peak.(2)Organs at risk dose: When comparing the proton group to the X-ray group, lung doses (V5, V20, MLD) and heart doses (V40, Dmax) were lower, with statistical significance (P < 0.05), while spinal cord and esophagus doses showed no significant differences between the two groups (P > 0.05).(3)Treatment-related toxicities: The incidence of grade 3 or higher adverse events in the proton group and X-ray group was 28.6% and 4.2%, respectively, with a statistically significant difference (P < 0.05). In terms of the types of adverse events, the proton group primarily experienced esophagitis and pneumonia, while the X-ray group primarily experienced pneumonia, esophagitis, and myocarditis. Both groups did not experience radiation myelitis or esophagotracheal fistula.(4)Efficacy evaluation: The RR in the proton group and X-ray group was 68.1% and 70.2%, respectively (P > 0.05), and the DCR was 92.2% and 86.4%, respectively (P > 0.05), indicating no significant difference in short-term efficacy between the two treatment modalities.(5)Survival status: The PFS in the proton group and X-ray group was 31.6 ± 3.5 months (95% CI: 24.7 ~ 38.5) and 24.9 ± 1.55 months (95% CI: 21.9 ~ 27.9), respectively (P > 0.05), while the OS was 51.6 ± 4.62 months (95% CI: 42.5 ~ 60.7) and 33.1 ± 1.99 months (95% CI: 29.2 ~ 37.1), respectively (P < 0.05).According to the annual-specific analysis, the PFS rates for the first to third years in both groups were as follows: 100%, 56.1% and 32.5% for the proton group vs. 100%, 54.3% and 26.3% for the X-ray group. No statistical differences were observed at each time point (P > 0.05).The OS rates for the first to third years in both groups were as follows: 100%, 88.2%, 76.4% for the proton group vs. 100%, 91.4%, 46.3% for the X-ray group. There was no significant difference in the first to second years (P > 0.05), but the third year showed a significant difference (P < 0.05). Survival curve graphs also depicted a similar trend. CONCLUSION: There were no significant statistical differences observed between the two groups in terms of PFS and OS within the first two years. However, the proton group demonstrated a clear advantage over the X-ray group in terms of adverse reactions and OS in the third year. This suggests a more suitable treatment modality and clinical evidence for populations with frail health, compromised cardio-pulmonary function, post-COVID-19 sequelae, and underlying comorbidities.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Esofagite , Neoplasias Pulmonares , Pneumonia , Terapia com Prótons , Humanos , Terapia com Prótons/efeitos adversos , Prótons , Estudos Retrospectivos , Quimiorradioterapia/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Esofagite/etiologia , Pneumonia/complicações , Pneumonia/tratamento farmacológico , Terapia Combinada
5.
Anal Chim Acta ; 1279: 341769, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827669

RESUMO

MicroRNA (miRNA) has gained significant attention as a potential biomarker for cancer clinics, and there is an urgent need for developing sensing strategies with high selectivity, sensitivity, and low background. In vitro diagnosis based on Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated protein (CRISPR/Cas) technology could simplify the detection procedure, improve sensitivity and selectivity, and has broad application prospects as the next-generation molecular diagnosis technology. We propose a novel dual signal amplification strategy, called CENTER, which integrates the CRISPR/Cas12a system, an entropy-driven DNA signaling network, and strand displacement amplification to achieve ultrasensitive detection of miR-141, a potential marker for prostate cancer. The experimental results demonstrate that CENTER can distinguish single nucleotide mutations, and the strategy exhibits a good linear calibration curve ranging from 100 aM to 1 pM. Due to dual signal amplification, the detection limit is as low as 34 aM. We proposed a method for identifying miR-141 expressed in human serum and successfully distinguished between prostate cancer patients (n = 20) and healthy individuals (n = 15) with an impressive accuracy of 94%. Overall, CENTER shows great promise for the detection of miRNA.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/genética , Sistemas CRISPR-Cas , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Calibragem , Entropia
6.
J Control Release ; 361: 547-567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567504

RESUMO

Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio , Neoplasias/terapia , Neoplasias/patologia , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Front Oncol ; 13: 1221309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601678

RESUMO

Purpose: To report two cases of hepatic cavernous hemangioma, a rare complication, in patients with locally advanced and advanced non-squamous non-small cell lung cancer (NSCLC) treated with PD-1 inhibitors. Additionally, to share clinical experiences related to the management of this condition. Methods: Two patients with locally advanced and advanced non-squamous non-small cell lung cancer (NSCLC) were enrolled in our hospital. Following the NCCN guidelines and expert consensus, both patients received standard treatment with Camrelizumab (PD-1 inhibitor). Subsequent abdominal CT scans revealed hepatic focal lesions that did not exhibit typical characteristics of metastatic tumors. Therefore, further systematic investigation was conducted to study the hepatic focal lesions. Results: (1) Ultrasound-guided percutaneous biopsy confirmed the diagnosis of hepatic cavernous hemangioma. A multidisciplinary consultation concluded that it was an adverse drug reaction to Camrelizumab. (2) Ten-gene testing for both patients did not reveal any driver gene mutations associated with lung cancer. Apart from the occurrence of hepatic cavernous hemangioma, there were no signs of disease progression or worsening. (3) Both patients had resolution of hepatic cavernous hemangioma after switching to alternative PD-1 inhibitors or discontinuing PD-1 inhibitor treatment. One patient experienced hemorrhage related to the hepatic hemangioma, which was managed with hemostasis and symptomatic treatment, resulting in improvement. (4) Clinical outcomes: The first patient achieved a progression-free survival (PFS) of 33 months in first-line treatment and had not reached the PFS endpoint in second-line treatment, with an overall survival exceeding 56 months. The second patient had not reached the PFS endpoint in first-line treatment, with an overall survival exceeding 31 months. Conclusion: Hepatic cavernous hemangioma is a rare and serious adverse reaction associated with PD-1 inhibitors. Camrelizumab may interact with the PD-1 molecule in a different manner compared to other PD-1 inhibitors, affecting the regulation of the VEGFR/ULBP2 signaling pathway. In future studies, next-generation sequencing may provide detailed molecular pathology information, which could help explain individual differences and provide a basis for the prevention or intervention of hepatic cavernous hemangioma.

8.
Eur J Med Chem ; 257: 115535, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37285684

RESUMO

Angiogenesis is the biological process in which existing blood vessels generate new ones and it is essential for body growth and development, wound healing, and granulation tissue formation. Vascular endothelial growth factor receptor (VEGFR) is a crucial cell membrane receptor that binds to VEGF to regulate angiogenesis and maintenance. Dysregulation of VEGFR signaling can lead to several diseases, such as cancer and ocular neovascular disease, making it a crucial research area for disease treatment. Currently, anti-VEGF drugs commonly used in ophthalmology are mainly four macromolecular drugs, Bevacizumab, Ranibizumab, Conbercept and Aflibercept. Although these drugs are relatively effective in treating ocular neovascular diseases, their macromolecular properties, strong hydrophilicity, and poor blood-eye barrier penetration limit their efficacy. However, VEGFR small molecule inhibitors possess high cell permeability and selectivity, allowing them to traverse and bind to VEGF-A specifically. Consequently, they have a shorter duration of action on the target, and they offer significant therapeutic benefits to patients in the short term. Consequently, there is a need to develop small molecule inhibitors of VEGFR to target ocular neovascularization diseases. This review summarizes the recent developments in potential VEGFR small molecule inhibitors for the targeted treatment of ocular neovascularization diseases, with the aim of providing insights for future studies on VEGFR small molecule inhibitors.


Assuntos
Inibidores da Angiogênese , Neoplasias , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Neovascularização Patológica/tratamento farmacológico , Neoplasias/tratamento farmacológico
9.
J Am Chem Soc ; 145(22): 12233-12243, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222742

RESUMO

Photocatalytic [3 + 2] cycloadditions and control of stereochemistry have remained a substantial challenge, particularly in the context of heterocycle synthesis; sporadic successful examples have involved enantioselective [3 + 2] photocycloaddition between redox-active direct group-containing cyclopropanes and alkenes for creation of cyclopentanes. Herein, we report a cooperative catalytic system comprising a chiral nickel Lewis acid catalyst and an organic photocatalyst fueled by visible-light irradiation that allows for the hitherto elusive asymmetric [3 + 2] photocycloaddition of ß-keto esters with vinyl azides under redox-neutral conditions. This protocol enables highly enantioselective construction of polycyclic densely substituted 3,4-dihydro-2H-pyrrole heterocycles featuring two contiguous tetrasubstituted carbon stereocenters, including a useful chiral N,O-ketal motif that is not easily accessible with other catalytic methods. Mechanistic studies revealed that the overall reactivity relies on the seamless integration of dual roles of nickel catalysts by the catalytic formation of the substrate/Ni complex, assisting both photoredox event and enantioselective radical addition.

10.
Angew Chem Int Ed Engl ; 62(21): e202301592, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932035

RESUMO

Metal-polarized aza-ortho-quinone methides (aza-o-QMs) are a unique and efficient handle for azaheterocycle synthesis. Despite great achievements, the potential of these reactive intermediates has not yet been fully exploited, especially the new reaction modes. Herein, we disclosed an unprecedented dearomatization process of metal-polarized aza-o-QMs, affording transient dearomatized spiroaziridine intermediates. Based on this serendipity, we accomplished three sequential dearomatization-rearomatization reactions of benzimidazolines with aza-sulfur ylides, enabling the divergent synthesis of bis-nitrogen heterocycles with high efficiency and flexibility. Moreover, experimental and theoretical studies were performed to explain the proposed mechanisms and observed selectivity. Further cellular evaluation of the dibenzodiazepine products identified a hit compound for new antitumor drugs.

11.
Biomed Pharmacother ; 160: 114341, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753952

RESUMO

While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , Neoplasias da Mama/metabolismo , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Receptores de Estrogênio/metabolismo , Estrogênios/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Suplementos Nutricionais
12.
Cancer Med ; 12(2): 2058-2074, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726651

RESUMO

BACKGROUND: The N6-methyladenosine (m6 A) can modify long non-coding RNAs (lncRNAs), thereby influencing a wide array of biological functions. However, the prognosis of m6 A-related lncRNAs (m6 ARLncRNAs) in non-small cell lung cancer (NSCLC) remains largely unknown. METHODS: Pearson correlation analysis was used to identify m6 ARLncRNAs in 1835 NSCLC patients and with the condition (|Pearson R| > 0.4 and p < 0.001). Univariant Cox regression analysis was conducted to explore the prognostic m6 ARLncRNAs. We filtered prognostic m6 ARLncRNAs by LASSO regression and multivariate Cox proportional hazard regression to construct and validate an m6 ARLncRNAs signature (m6 ARLncSig). We analyzed the correlation between the m6 ARLncSig score and clinical features, immune microenvironment, tumor mutation burden, and therapeutic sensitivity and conducted independence and clinical stratification analysis. Finally, we established and validated a nomogram for prognosis prediction in NSCLC patients. RESULTS: Forty-one m6 ARLncRNAs were identified as prognostic lncRNAs, and 12 m6 ARLncRNAs were selected to construct m6 ARLncSig in the TCGA training dataset. The m6 ARLncSig was further validated in the testing dataset, GSE31210, GSE37745, GSE30219, and our NSCLC samples. In terms of m6 ARLncSig, NSCLC patients were divided into high- and low-risk groups, with significantly different overall survival (OS), clinical features (age, sex, and tumor stage), tumor-infiltrating immune cells, chemotherapeutic sensitivity, radiotherapeutic response, and biological pathways. Moreover, m6 ARLncSig independently predicted the OS of NSCLC patients. Finally, the robustness and clinical practicability for predicting NSCLC patient prognosis was improved by constructing a nomogram containing the m6 ARLncSig, age, gender, and tumor stage. CONCLUSIONS: Our study demonstrated that m6 ARLncSig could act as a potential biomarker for evaluating the prognosis and therapeutic efficacy in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Nomogramas , Prognóstico , RNA Longo não Codificante/genética , Microambiente Tumoral
13.
J Control Release ; 353: 535-548, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481693

RESUMO

Immunotherapy has achieved remarkable research outcomes and shows the potential to cure cancer. However, its therapeutic response is limited in terms of the immunosuppressive tumor microenvironment induced by hypoxia, in which the adenosinergic A2A receptor (A2AR) pathway is mainly participated. Here, we developed a novel core/shell structured nanoplatform composed of macrophage membrane-coated mesoporous silica nanoparticles which loaded catalase, doxorubicin (Dox), and resiquimod (R848), to promote the efficacy of immunotherapy. The nanoplatform is able to actively target the tumor site via ligand binding, and the A2AR of T regulatory (Treg) cells can further be blocked due to in situ oxygen production by hydrogen peroxide catalysis. Meanwhile, Dox and R848 released from the nanoplatform can induce immunogenic cell death and enhance the activation of dendritic cells (DCs), respectively. Thus, the improved microenvironment by A2AR blockade and the stimulation of the DCs to enhance the CD8+ T cells mediated immune response were achieved. Consequently, the expression of Treg cells decreased to 9.79% in tumor tissue and the inhibition rate of tumor growth reached 73.58%. Therefore, this nanoplatform provides a potential strategy for clinical application in cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Receptor A2A de Adenosina/metabolismo , Dióxido de Silício/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Oxigênio/metabolismo , Adenosina , Macrófagos/metabolismo , Microambiente Tumoral
14.
J Am Chem Soc ; 144(43): 19932-19941, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270010

RESUMO

Searching for efficient strategies to access structurally novel aminoindolines is of great significance for drug discovery. However, catalytic asymmetric de novo construction of aminoindoline scaffolds with functionality primed for diversification still remains elusive. Here, we report a Cu-catalyzed asymmetric cyclization of ethynyl benzoxazinones with amines, producing chiral 3-aminoindolines in good yield and with high enantioselectivity (up to 97% yield and 98:2 er). Moreover, a radical-mediated sulfonyl migration of these products was unexpectedly found, further affording new chiral 3-aminoindolines bearing alkenyl sulfonyl groups with retained enantiopurity (up to 84% yield and 98:2 er). Bioactivity evaluations indicate that these 3-aminoindolines show notable antitumor activities and chirality is proven to have a significant impact on their antitumor activity.


Assuntos
Aminas , Ciclização , Estereoisomerismo , Catálise
15.
J Mol Evol ; 90(5): 375-388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962830

RESUMO

Diseases and environmental stresses are two distinct challenges for virtually all living organisms. In light of evolution, cellular responses to diseases and stresses might share similar molecular mechanisms, but the detailed regulation pathway is not reported yet.We obtained the transcriptomes and translatomes from several NSCLC (non-small-cell lung cancer) patients as well as from different species under normal or stress conditions. We found that the translation level of gene ATF4 is remarkably enhanced in NSCLC due to the reduced number of ribosomes binding to its upstream open reading frames (uORFs). We also showed the evolutionary conservation of this uORF-ATF4 regulation in the stress response of other species. Molecular experiments showed that knockdown of ATF4 reduced the cell growth rate while overexpression of ATF4 enhanced cell growth, especially for the ATF4 allele with mutated uORFs. Population genetics analyses in multiple species verified that the mutations that abolish uATGs (start codon of uORFs) are highly deleterious, suggesting the functional importance of uORFs.Our study proposes an evolutionarily conserved pattern that enhances the ATF4 translation by uORFs upon stress or disease. We generalized the concept of cellular response to diseases and stresses. These two biological processes may share similar molecular mechanisms.


Assuntos
Fator 4 Ativador da Transcrição/genética , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fases de Leitura Aberta , Fenômenos Biológicos , Carcinoma Pulmonar de Células não Pequenas/genética , Códon de Iniciação , Humanos , Neoplasias Pulmonares/genética , Biossíntese de Proteínas
16.
Adv Sci (Weinh) ; 9(30): e2202706, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031409

RESUMO

Emerging evidence emphasizes the functional impacts of host microbiome on the etiopathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). However, there are limited mechanistic insights into the contribution of microbial biomolecules especially microbial peptides toward modulating immune homeostasis. Here, by mining the metagenomics data of tonsillar microbiome, a deficiency of the encoding genes of lantibiotic peptides salivaricins in RA patients is identified, which shows strong correlation with circulating immune cells. Evidence is provided that the salivaricins exert immunomodulatory effects in inhibiting T follicular helper (Tfh) cell differentiation and interleukin-21 (IL-21) production. Mechanically, salivaricins directly bind to and induce conformational changes of IL-6 and IL-21 receptors, thereby inhibiting the bindings of IL-6 and IL-21 to their receptors and suppressing the downstream signaling pathway. Finally, salivaricin administration exerts both prophylactic and therapeutic effects against experimental arthritis in a murine model of RA. Together, these results provide a mechanism link of microbial peptides-mediated immunomodulation.


Assuntos
Artrite Reumatoide , Bacteriocinas , Microbiota , Tonsila Palatina , Receptores de Interleucina-21 , Receptores de Interleucina-6 , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Bacteriocinas/uso terapêutico , Interleucina-6/metabolismo , Receptores de Interleucina-21/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Tonsila Palatina/microbiologia , Receptores de Interleucina-6/metabolismo
17.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884544

RESUMO

Lung adenocarcinoma (LUAD) is a common pathological type of lung cancer worldwide, and new biomarkers are urgently required to guide more effective individualized therapy for patients. Ubiquitin-related genes (UbRGs) partially participate in the initiation and progression of lung cancer. In this study, we used ubiquitin-related gene pairs (UbRGPs) in tumor tissues to access the function of UbRGs in overall survival, immunocyte infiltration, and tumor mutation burden (TMB) of patients with LUAD from The Cancer Genome Atlas (TCGA) database. In addition, we constructed a prognostic signature based on six UbRGPs and evaluated its performance in an internal (TCGA testing set) and an external validation set (GSE13213). The prognostic signature revealed that risk scores were negatively correlated with the overall survival, immunocyte infiltration, and expression of immune checkpoint inhibitor-related genes and positively correlated with the TMB. Patients in the high-risk group showed higher sensitivity to partially targeted and chemotherapeutic drugs than those in the low-risk group. This study contributes to the understanding of the characteristics of UbRGPs in LUAD and provides guidance for effective immuno-, chemo-, and targeted therapy.

18.
J Inflamm Res ; 15: 2835-2853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645575

RESUMO

Purpose: High-altitude environment mainly with hypobaric hypoxia could induce pathological alterations in ocular tissue. Previous studies have mostly focused on sporadic case reports and simulated high-altitude hypoxia experiments. This aim of this study was to explore the proteomic and morphological changes of ocular tissue in mice at real altitude environment. Methods: In this study, mice were flown from Chengdu (elevation: 500 m) to Lhasa (elevation: 3600 m). After exposure for 1day, 3, 6, 10, 20, 30, and 40days, the mice were euthanatized to obtain blood and ocular tissue. Serological tests, ocular pathological examinations, integral ocular proteomics analysis, and Western blot were conducted. Results: We focused on acute phase (1-3 days) and chronic phase (>30 days) during high-altitude acclimatization. Serum interleukin-1 was increased at 3 days, while superoxide dismutase, interleukin-6, and tumor necrosis factor-α showed no statistical changes. H&E staining demonstrated that the cornea was edematous at 3 days and exhibited slower proliferation at 30 days. The choroid showed a consistently significant thickening, while there existed no noticeable changes in retinal thickness. Overall, 4073 proteins were identified, among which 71 and 119 proteins were detected to have significant difference at 3 days and 40 days when compared with the control group. Functional enrichment analysis found the differentiated proteins at 3 days exposure functionally related with response to radiation, dephosphorylation, negative regulation of cell adhesion, and erythrocyte homeostasis. Moreover, the differential profiles of the proteins at 40 days exposure exhibited changes of regulation of complement activation, regulation of protein activation cascade, regulation of humoral immune response, second-messenger-mediated signaling, regulation of leukocyte activation, and cellular iron homeostasis. Interestingly, we found the ocular proteins with lactylation modification were increased along high-altitude adaptation. Conclusion: This is the first work reporting the ocular proteomic and morphological changes at real high-altitude environment. We expect it would deep the understanding of ocular response during altitude acclimatization.

19.
Cell Death Dis ; 13(5): 427, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504868

RESUMO

Lung adenocarcinoma (LUAD) represents the most frequently diagnosed histological subtype of non-small cell lung cancer with the highest mortality worldwide. Transcriptional dysregulation is a hallmark of nearly all kinds of cancers. In the study, we identified that the POU domain, class 6, transcription factor 1 (POU6F1), a member of the POU family of transcription factors, was closely associated with tumor stage and death in LUAD. We revealed that POU6F1 was downregulated in LUAD tissues and downregulated POU6F1 was predictive of an unfavorable prognosis in LUAD patients. In vitro assays, including CCK8, soft agar, transwell, clone formation, wound-healing assay, and nude mouse xenograft model all revealed that POU6F1 inhibited the growth and invasion of LUAD cells. Mechanistically, POU6F1 bound and stabilized retinoid-related orphan receptor alpha (RORA) to exert the transcriptional inhibition of hypoxia-inducible factor 1-alpha (HIF1A) and alter the expression of HIF1A signaling pathway-associated genes, including ENO1, PDK1, and PRKCB, thereby leading to the suppression of LUAD cells. Collectively, these results demonstrated the suppressive role of POU6F1/RORA in the progression of LUAD and may potentially be used as a target for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Transdução de Sinais
20.
Autophagy ; 18(11): 2615-2635, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35253629

RESUMO

Macroautophagy/autophagy is a conserved cellular process associated with tumorigenesis and aggressiveness, while mechanisms regulating expression of autophagic machinery genes in cancers still remain elusive. Herein, we identified E2F4 (E2F transcription factor 4) as a novel transcriptional activator of cytoprotective autophagy crucial for zinc homeostasis in cancer cells. Gain- and loss-of-function studies showed that E2F4 promoted autophagy in a cell cycle-dependent manner, resulting in facilitated degradation of MT (metallothionein) proteins, elevated distribution of Zn2+ within autophagosomes, decreased labile intracellular zinc ions, and increased growth, invasion, and metastasis of gastric cancer cells. Mechanistically, E2F4 directly regulated the transcription of ATG2A (autophagy related 2A) and ULK2 (unc-51 like autophagy activating kinase 2), leading to autophagic degradation of MT1E, MT1M, and MT1X, while USP2 (ubiquitin specific peptidase 2) stabilized E2F4 protein to induce its transactivation via physical interaction and deubiquitination in cancer cells. Rescue experiments revealed that USP2 harbored oncogenic properties via E2F4-facilitated autophagy and zinc homeostasis. Emetine, a small chemical inhibitor of autophagy, was able to block interaction between UPS2 and E2F4, increase labile intracellular zinc ions, and suppress tumorigenesis and aggressiveness. In clinical gastric cancer specimens, both USP2 and E2F4 were upregulated and associated with poor outcome of patients. These findings indicate that therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression.Abbreviations: 3-MA: 3-methyladenine; ANOVA: analysis of variance; ATG2A: autophagy related 2A; ATG5: autophagy related 5; ATP: adenosine triphosphate; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CCND1: cyclin D1; CDK: cyclin dependent kinase; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; E2F4: E2F transcription factor 4; eATP: extracellular adenosine triphosphate; EBSS: Earle's balanced salt solution; FP: first progression; FRET: fluorescence resonance energy transfer; FUCCI: fluorescent ubiquitination-based cell cycle indicator; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDM2: MDM2 proto-oncogene; MKI67/Ki-67: marker of proliferation Ki-67; MT: metallothionein; MT1E: metallothionein 1E; MT1M: metallothionein 1M; MT1X: metallothionein 1X; MTT: 3-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide; OS: overall survival; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; qPCR: quantitative PCR; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; UBXN1: UBX domain protein 1; Ub: ubiquitin; ULK2: unc-51 like autophagy activating kinase 2; USP14: ubiquitin specific peptidase 14; USP2: ubiquitin specific peptidase 2; USP5: ubiquitin specific peptidase 5; USP7: ubiquitin specific peptidase 7; ZnCl2: zinc chloride.


Assuntos
Autofagia , Neoplasias Gástricas , Humanos , Autofagia/genética , Antígeno Ki-67 , Neoplasias Gástricas/genética , Proteases Específicas de Ubiquitina/metabolismo , Homeostase , Carcinogênese , Trifosfato de Adenosina , Metalotioneína , Zinco , Fatores de Transcrição E2F , Peptidase 7 Específica de Ubiquitina , Ubiquitina Tiolesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA